

Paul Hessburg, Senior Research Ecologist, paul.hessburg@usda.gov

Context. Before the era of fire suppression

- ► Lightning + Indigenous burning maintained large areas of wNA in hardwood & open conifer forest, meadows, woodlands
- ► This went on for 10,000 yrs. (Lake and Christiansen 2020)
- ► Closed canopy forests minimized food & resource production.
- ► Understories were the focus of burning (Roos et al. 2022, Swetnam et al. 2016, Eisenberg et al. 2024)
- ► Absent these fires, forests have grown dense & many nonforest areas are now forested (Hagmann et al. 2021)
- ▶ Indigenous & lightning fires also burned extensively in moist and cold forests (Hessburg et al. 2019)
- ▶ Often, 35-50% of a large landscape was in open forest or nonforest on forest capable sites (Hessburg et al. 2016, 2019)
- ▶ With fire exclusion, now a large fire deficit
- ▶ Because of these fires, many forests were woody fuel limited, many large, low-mod intensity, short duration, low smoke fires

Credit: Frederick Remington (public domain)

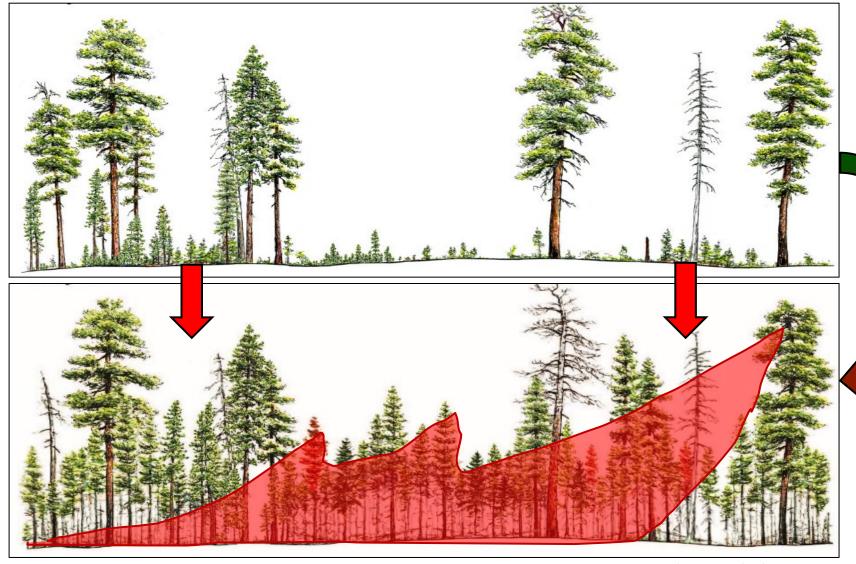
Dry mixed conifer forests Frequent fires (2-15 yrs)

Produced an important local stabilizing effect

High frequency, low-mod severity fires increased the likelihood of the same in future fires

(Povak et al. 2023, Prichard et al. 2017)

Bob Van Pelt drawing



Lacking frequent fires

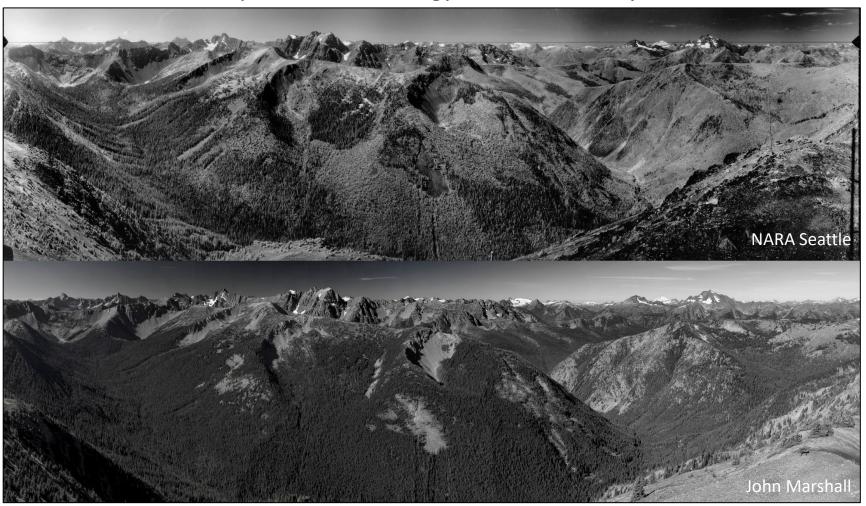
Trees accumulate

Flames then "climb" the layered subcanopy

Results in crown fires

Bob Van Pelt drawing

Moderate frequency fire (20-50 yrs) Moist forests



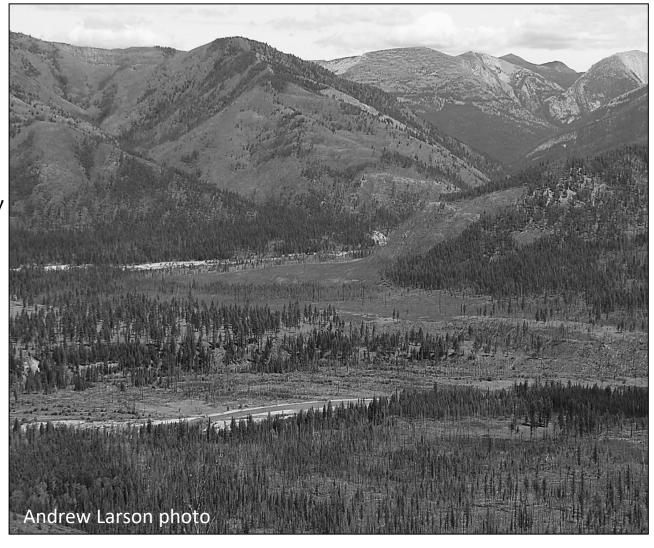
Fuel provides the energy for burn severity

Infrequent fire (30-150 yrs) Cold forests

High connectivity of dense forest provides the means for large & severe fires

Take home: Forest reburning created large landscape stabilizing effects

- Fires overlapped over space and time, the 1st fire killed trees, the 2nd reduced dead wood from the 1st fire.
 - o Reburns decoupled surface from canopy fuels over large areas, enabled the landscape to stock more forest.
 - o Made them more difficult to burn, crownfires require the energy from burning surface fuels to involve the canopy.
- Forest reburning created dynamically shifting mosaics of non-forest & forest conditions, which stabilized landscapes.
- This shifting patchwork governed likelihood of burning and burn severity patterns, dynamics vs statics.
- Resilient landscapes are much less forested than we think, current forest cover & C references inflated by 20-40%.



Nonforest conditions & resilient landscapes

- ✓ Much nonforest historically, 25-75% of area
 - Nonforests: sparsely treed woodlands, meadows, shrublands, wetlands, burned bare ground, early seral conditions, prairies
 - Amount of area depends on the forest type, geography
 - Derives from reburning, fire on fire interactions
 - Hardwood patches also abundant, slowing fire spread
- ✓ These features limited future fire size & severity
 - Tug-o-war btw factors growing/burning forests
 - Nonforests & hardwood forest were the emergent property & they governed fire spread & severity
- √ With CC, more nonforest, hardwoods, open forest
- √ We can aid these transitions w/ management

Solutions for managing dynamics

- ✓ Current wNA forest biomass is unsustainable
 - Re-establish successional mosaics, topography as template
- ✓ Stabilize tug-of war btw factors growing / removing forests
 - More meadows, woodlands, hardwoods, wetlands
 - CWD mapping can show us where to place them
- ✓ Restore the positive ecological role of fire
 - Incorporate Indigenous knowledge & practices
 - Tools are cultural & Rx burning, managed wildfires, thinning + Rx burning
 - Biomass removal can fuel a growing bioeconomy
- ✓ Largest opportunity for gain is after wildfires.
 - 1/4 to 1/2 of the burned forest is a pretty good or better 1st entry fire, keep fire going with Rx & cultural burning
- √ 2nd largest opportunity, managed wildfires away from WUI
 - Proactive PODs, PCL, burn planning, work natural ignitions
- ✓ With CC, nonforests & open canopy forests increasingly relevant to stabilizing landscapes
 - Create these conditions, better than wildfire transitions

OR Bootleg Fire of 2021, 414,000 ac, 3rd largest since 1900.

Fire rapidly transitions from crownfire in untreated forest...

... to surface fire in thinned & burned forest

The thinned only treatment does not protect the forest

Thank you!

paul.hessburg@usda.gov pfhess@uw.edu