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MARBLED MURRELET (BRACHYRAMPHUS MARMORATUS) POPULATION TRENDS AND 
THE CALIFORNIA CURRENT 

 

ABSTRACT  
 

Population trend is a key metric used in wildlife management and conservation. Trend can be estimated by 
regression, but there are various models that can be fit. It is important to explore different regressions to ensure 
the most appropriate model is used to support management actions or ecological understanding. The marbled 
murrelet (Brachyramphus marmoratus) is a federally protected seabird species that occurs in the Pacific 
Northwest of North America. To better understand population trends of this declining species, multiple trend 
models were fit to 2001-2020 at-sea survey data for marbled murrelet in California, Oregon, and Washington. The 
statistical properties and plausibility of each model were compared. Linear, exponential, and Monte Carlo 
exponential models all indicated that a flat trend (λ close to zero) existed. A quadratic model had a plausible fit 
which may reflect the pattern of fluctuating ocean conditions. A segmented model had a good fit but had issues of 
biological plausibility. The best model overall was a sinusoidal model with a linear term, which also may correlate 
with ocean conditions. We show that conditions in the California Current are likely related to murrelet 
productivity. The linear and exponential models have utility for regulatory purposes, whereas the other models 
may suggest mechanisms regulating the population. We concluded that trend can be summarized in multiple 
ways, but a thorough analysis, perhaps using multiple distributions, is necessary to avoid incorrect conclusions. 
 
 
KEY WORDS  
 

Brachyramphus marmoratus, conservation, demography, endangered species, marbled murrelet, California 
Current, Oregon, population trend, Washington, California 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



NCASI | MARBLED MURRELET (BRACHYRAMPHUS MARMORATUS) POPULATION TRENDS AND THE CALIFORNIA CURRENT  4 

 

Table of Contents 
1.0 INTRODUCTION .......................................................................................................... 5 
2.0 METHODS ..................................................................................................................... 6 
3.0 RESULTS ....................................................................................................................... 8 
4.0 DISCUSSION ............................................................................................................... 11 
5.0 CONCLUSIONS........................................................................................................... 13 
REFERENCES ......................................................................................................................... 13 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



NCASI | MARBLED MURRELET (BRACHYRAMPHUS MARMORATUS) POPULATION TRENDS AND THE CALIFORNIA CURRENT  5 

1.0 INTRODUCTION 
 
For species of concern, commercial species (e.g., ocean fisheries), and recreational or subsistence harvests (e.g., 
game species), an estimate of population trend is a key management index (Wagner et al. 2013). A strong upward 
trend might enable a species to be removed from regulatory protection, or for a recreational or commercial 
harvest to resume, continue, or intensify. A stable population might indicate that extinction risk for a species is 
low or that current levels of take are sustainable. Trends might be related to underlying processes (e.g., harvest 
level, rate of habitat loss, habitat change, climate, natural population cycles). 
 
When a population change is suspected, statistical trend models are often used to verify a trend, or monitor 
results of management activities, and indicate that a change in management is warranted. For example, the 
dramatic decline of some bat species in the eastern US due to white-nose syndrome (Frick et al. 2010) is apparent 
with annual raw counts in hibernacula and with observations of reduced capture rates and detections via acoustic 
detectors. This trend is evident due to dramatic declines (>90%) in some species over a relatively short period of 
time. Likewise, the California condor (Gymnogyps californianus) (Roach and Patel 2019) recently has had a strongly 
positive trend, clearly having increased from historic lows. 
 
A population trend is a somewhat abstract summary statistic that reflects useful information about a species’ 
abundance trajectory. One of the difficulties with assessing trend is that over long periods, populations are likely 
to fluctuate a great deal, with detectable “trends” increasing (up and down) with shorter time segments (Loehle 
and Arghami 2017). Populations might even cycle on decadal, or longer, time scales, leading to a high likelihood of 
spurious trend estimates derived from shorter time periods. For short periods, lack of statistical power can also 
make trend detection difficult (Wagner et al. 2013). 
 
Because trend is not a physical metric, but rather is a summary statistic, there are multiple ways to conceptualize 
it, each of which leads to a different statistical approach. To better understand this, we present several trend 
metrics and explore their assumptions and complications. The example data set is for marbled murrelet 
(Brachyramphus marmoratus) in the US Pacific Northwest.  
 
The marbled murrelet is a small seabird found along the western coast of North America, ranging from Northern 
California to Alaska. It has been suffering long-term declines over most of its range (Huff et al. 2006), including 
Canada (Bertram et al. 2015), leading to its listing by the US Fish and Wildlife Service as federally Threatened, and 
state endangered listing status in California, Oregon, and Washington (Huff et al. 2006; Desimone 2016). The 
reasons for population decline appear to be the loss of old-growth forest for nesting, low reproductive rates, and 
declining diet quality and/or quantity at sea (Peery et al. 2004; Becker and Beissinger 2006; Huff et al. 2006; 
Becker et al. 2007; Norris et al. 2007; Gutowsky et al. 2009). The Northwest Forest Plan (USDA Forest Service and 
BLM 1994a and 1994b) should, in theory, help the marbled murrelet over time (McIver et al. 2022), so the 
detection of trend for this species may provide an indication of success or failure of the Plan. 
 
Due to the marbled murrelet’s small size and habit of nesting on large limbs in old trees, the species’ demography 
has been difficult to study (Huff et al. 2006; Raphael 2006). More specifically, marbled murrelets are extremely 
difficult to survey in the forest due to their cryptic nests and behavior. Therefore, at-sea surveys remain the best 
method to estimate regional population size (Madsen et al. 1999), and the most widely used method for long-
term monitoring (Miller et al. 2006). 
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2.0 METHODS 
 
Population estimates and 95% confidence limits for 2001 through 2020 (Table 1, Figure 1) from McIver et al. 
(2022, p.10, Table 2) were used to evaluate population trends across the range of marbled murrelets from 
California through Washington, USA. The at-sea monitoring data were based on counts from ocean transects in 
the breeding season. No attempt was made by McIver et al. to estimate total population. Given the constant 
methods and sampling effort with lack of extrapolation, detectability is not an issue unless detectability changes 
over time. However, there is no evidence of a change in detectability. To compare possible trend estimates from 
the at-sea relative abundance data, six methods were compared. Models were evaluated using tools in Wolfram 
Mathematica. 
 

Table 1. Marbled murrelet population estimates for Washington, Oregon, and California. Data from McIver et al. 
(2022). Rounded to nearest 100. 

 

Year Birds Birds lower 95% 
confidence limit 

Birds upper 95% 
confidence limit 

2001 22,300 18,000 26,700 
2002 22,700 17,400 27,900 
2003 22,200 18,300 26,200 
2004 21,600 17,100 26,000 
2005 20,200 16,000 24,400 
2006 18,300 15,300 21,300 
2007 17,300 12,700 22,000 
2008 18,100 15,000 21,300 
2009 17,200 13,700 20,800 
2010 16,600 13,000 20,200 
2011 22,000 16,600 27,400 
2012 21,100 16,400 25,800 
2013 19,700 15,400 23,900 
2014 21,300 17,492 25,100 
2015 24,100 19,700 28,600 
2016 22,600 18,200 27,100 
2017 23,000 18,500 27,600 
2018 22,500 17,500 27,600 
2019 21,200 16,400 26,000 
2020 19,700 15,500 23,900 

 
 

 
 
 
 
 
 
 

https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
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Figure 1. Marbled murrelet time-series for the three-state region (black line) and 95% confidence intervals (dashed 
lines) for each date (see Table 1). 

 
 

Table 2. Trend models with goodness-of-fit statistics. Slope from linear component of models relative to 2001 level. 
 

Model Slope 𝑹𝑹𝒂𝒂𝒂𝒂𝒂𝒂𝟐𝟐  𝑨𝑨𝑨𝑨𝑨𝑨𝒄𝒄 
Linear 0.27% -0.0028 370.54 
Exponential 0.3% -0.03 370.52 
Quadratic 0.145% 0.14 369.25 
Segmented -0.05%* 0.70  
Sinusoidal 0.15% 0.74 352.08 

 
 
A linear model is the simplest way of describing how the population has changed over time (Wagner et al. 2013). 
Simple linear regressions of the population trend were performed to evaluate trend on the arithmetic and log 
scales. It is possible with these data to use weighted regression, but the results remained consistent due to fairly 
constant confidence intervals (Figure 1), and thus weighting was left out for simplicity. A linear model with log-
transformed data was based on an assumption of proportional population change. This approach is common with 
population data (McIver et al. 2022; Wagner et al. 2013). The shape of the data suggested that a quadratic model 
might be descriptive, so one was developed. It is possible that a piecewise linear model could fit the data, so we 
also demonstrated that approach. Finally, a sinusoidal model with a linear term was fit. 
 
A novel approach was also developed based on the 95% confidence intervals of the at-sea relative abundance 
data. Consider a simple population model: 
 𝑁𝑁𝑡𝑡+1 = 𝜆𝜆 𝑁𝑁𝑡𝑡 (1) 
 

Year 

N
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where λ is the population growth rate and 𝑁𝑁𝑡𝑡 is the population at t. To be consistent with the data, projections 
using hypothetical λ need to stay within the 95% confidence intervals at each t. The initial No also has uncertainty. 
We can randomly generate {No, λ} pairs, solve for the time trajectory using eq. 1, and keep only the parameter sets 
that satisfy the bounding constraints. This Monte Carlo method generates a set of feasible parameter pairs that do 
not contradict the known data. Each {No, λ} pair defines a population trajectory for the species with a possible 
constant λ over time consistent with the data. Note that this is simply a summary of one way of looking at the 
data, not a “true” trend or a statistical model. 
 

3.0 RESULTS 
 
The best-fit linear trend for the 3-state region had a slope of +59.4 birds/y or +0.27% annually based on the first 
year (Table 2, Figure 2). The slope of the trend line was not significant (P=0.5, confidence intervals overlapped 
zero), indicating that there was no trend in this series, which is consistent with McIver et al. (2022). The fit to the 
exponential model (Figure 2) had λ=1.003 (0.3%)/yr., identical to the linear model and visually indistinguishable 
from it. For this model, P=0.5 and confidence intervals included zero. For λ close to 1, the exponential model 
approximated a straight line. For both the linear and exponential models, 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  was <0 because the model was less 
informative than the mean. The quadratic model (Figure 3) appeared to capture these data and had 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  =0.14. 
The segmented model (Figure 4) had a better fit, with 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 =0.70. The sinusoidal model (Figure 5) had a slope 
coefficient of 0.15% and 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  of 0.74. The period was about 14.6y. For the Monte Carlo-consistent modeled 
marbled murrelet population trajectories, only eight trajectories (defined by No and λ) were found that satisfied 
the constraints based on the confidence interval data out of 10,000 random trials (Figure 6). Mean population 
growth rate (λ) of these eight feasible values was found to be 1.004, with all slopes positive. The best AICC and 
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  values were for the sinusoidal model, though no AICC value could be computed for the segmented model. 
 

 
 

 

 

Year 

N
 

Figure 2. Marbled murrelet population with linear fit (red line) and exponential fit (green line). 
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Figure 4. Segmented linear fit to marbled murrelet data. 

 
 
 
 

Figure 3. Quadratic model fit to marbled murrelet data. 

Year 

N
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N
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Figure 5. Sinusoidal fit to marbled murrelet data. 
 
 
 

 
 
 

Figure 6. Marbled murrelet population (black line), Monte Carlo consistent population trajectories (red), upper and 
lower 95% population confidence limits (black dashed lines). 

  

Year 

N
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N
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4.0 DISCUSSION 
 
The linear and exponential models (Figure 2) were essentially equivalent and visually congruent, with 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  
essentially zero. Because regression analysis uses the mean as the null, we typically can only say that a fitted slope 
close to zero does not differ significantly from zero, but we cannot ascertain that it is zero. One metric that can 
represent significance of a low slope is the confidence intervals on the slope. In this case, we can estimate that 
0.994≤λ≤1.012 for the exponential model. For the linear model, the estimated percent change for the years 2001 
to 2022 is between -0.61% and +1.2%, essentially the same. The Monte Carlo resampling approach was consistent 
with these results. 
 
The quadratic model (Figure 3) had a better fit (𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 =0.14) than the linear and exponential models, though 0.14 
does not represent a particularly high explanatory level. The AICC of 369.25 was marginally better (lower) than that 
for the linear model of 370.54. It is not clear if this model performed better and if we can use it to make 
statements about population trends. If we could relate this model to ocean conditions as this affects food quantity 
and quality (Becker and Beissinger 2006; Becker et al. 2007; Huff et al. 2006; Gutowsky et al. 2009), or some other 
driver, then this model could be useful. Without such a relationship, however, it would be risky to extrapolate the 
ending upturn. In addition, this curve cannot be converted to a “trend” per se. Population fluctuations over 
periods of 20 years are also not unusual (Loehle and Arghami 2017).  
 
The segmented linear model (Figure 4) explained more of the variation in the data, with 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 =0.70. However, the 
discontinuity between 2010 and 2011 represented a 32.5% increase, an impossible increase for this species, given 
the low breeding propensity (Lorenz et al. 2017) and single egg per season (Beissinger 1995). The slope changed 
from -758 birds/y to -11.5 birds/y in a single year. This change in slope coincided with the numerical discontinuity 
from 2010-2011. The discontinuity could result from a change in sampling or other artifact, but we are not aware 
of any such issue, especially that could change the slope so radically (Loehle et al. 2022). Before using this model, 
these issues would need to be explored. 
 
The sinusoidal model had the largest 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 , best fit visually, and the lowest AICC. If the modeled trend could be 
related to some cyclical driver, it could potentially be extrapolated by at least a few years. As an example of a 
potentially cyclical driver for trend in marbled murrelet population, we explore some correlations with ocean 
conditions for this model below. 
 
The linear, exponential, sinusoidal, and Monte Carlo exponential provided similar results for slope (Table 2) which 
would be unlikely if the true trend was negative. For a flat “true” trend, this makes sense. For management 
purposes, these estimates of slope (trend) answer the basic question about the status of the population, though of 
course a longer series would be more informative. The quadratic model seems supported by the data and unlikely 
to be due to chance but cannot be extrapolated per se. While the segmented model has good statistical support, it 
lacks biological plausibility without further investigation. The sinusoidal model seems the best supported by fit 
statistics and visual inspection. This would be a good model to try to relate to demographic drivers like ocean 
conditions. Thus, the different models serve fundamentally different purposes. 
 
While it is assumed that nesting habitat losses could account for part of the long-term decline in murrelet 
abundance (e.g., Huff et al. 2006; Raphael 2006), area of inland nesting habitat, defined mainly by large trees, 
does not change in a pattern or speed consistent with fluctuations found in these data. It is plausible that modest 
population decline and recovery over the study period were due, at least in part, to ocean conditions that affected 
prey abundance. A long-term decline in prey quality for this bird has been documented (Becker and Beissinger 
2006; Becker et al. 2007; Gutowsky et al. 2009; Norris et al. 2007). Multiple indicators exist for oceanic conditions, 
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such as sea surface temperature (SST) magnitude and spatial pattern, and copepod abundance (NOAA 2021), but 
it is not clear how these indicators relate directly to forage fish availability and quality (Rivers et al. 2022). Betts et 
al. (2020) developed an index based on indicators of conditions favorable to juvenile salmon survival and were 
able to develop plausible models for nest site occupancy. However, juvenile salmon do not forage in the same 
areas or eat the same foods as murrelets, so it remains unclear whether this correlation has biological relevance.  
 
We offer additional evidence for linkages to ocean conditions. It is well-documented that the northern Pacific has 
oscillatory climatic modes. Both the Pacific Decadal Oscillation and El Niño-Southern Oscillation (ENSO) have been 
shown to be relatively consistent, long-term systems of fluctuating ocean SST patterns, winds, and currents 
(Amaya et al. 2019; Jiménez-Esteve and Domelsen 2019; McGregor et al. 2010; Verdon and Franks 2006) with 
interactions and modulations of the two dynamic systems over time. The consistency of these phenomena over 
time does not mean that an exact periodicity is ever present. The patterns repeat over time with rough periodicity, 
but patterns are complex across space and time. There are eddies and turbulence at all scales in the ocean which 
make local periods not necessarily identical to the global or Pacific-wide cycles. Multiple historical studies have 
found relationships between these two cycles and Pacific fish stocks (Hollowed et al. 2001; Lehodey et al. 2021; 
Mantua 2015; Sydeman et al. 2013).  
 
Given that murrelets forage close to shore, it is useful to examine patterns in the near-shore environment (Betts et 
al. 2020). Hollowed et al. (2001) noted that ENSO is particularly strong along the North American West Coast. The 
West Coast near-shore environment is dominated by the California Current, which is strongly affected by ENSO 
(Fiedler and Mantua 2017; Jacox et al. 2015; Lehodey et al. 2021), with up to 2°C temperature swings and changes 
in salinity, current strength and distance to shore, and mixed layer depth. Multiple changes in the California 
Current have been documented in recent decades, including some that affect upwelling (Hyrenbach and Veit 
2003; Oedekoven et al. 2001). These changes have major effects on the biota (Ainley et al. 2005; Fiedler and 
Mantua 2017; Jacox et al. 2015; Sydeman et al. 2013). Stronger winter upwelling has been shown to lead to earlier 
nesting in several species, likely due to increased prey abundance early in the breeding season (Black et al. 2010; 
Shroeder et al. 2009). Overall bird abundance spatial patterns have a coherent relationship to krill abundance 
(Santora et al. 2011).  
 
Responses by the bird community to ocean conditions are complex (Ainley et al. 2005; Ainley and Hyrenbach 
2010; Nur et al. 2011). Different bird species forage at different depths in different locations to obtain their 
preferred prey (Oedekoven et al. 2001; Ainley and Hyrenbach 2010). There is even potential competition with 
whales (Ainley and Hyrenbach 2010). In response to changing conditions, species are affected differently (Ainley 
and Hyrenbach 2010). Behavioral flexibility leads species to change migration routes, where they forage, and prey 
taken (Oedekoven et al. 2001). Despite some degree of nest site fidelity, it is possible that murrelets at both 
regional and local levels also respond to prey by changing where and when they forage, especially for unpaired or 
young birds, or when conditions preclude nesting. 
 
To understand the ocean mechanisms driving murrelet demography, we would need detailed information on diet, 
where and when murrelets forage, how their prey varies over time, and demographic response to diet. Most of 
this information is not readily available. Rivers et al. (2022) proposed a detailed research agenda to gather the 
needed information. However, there are some historical patterns in the California Current that may point to 
mechanisms worth exploring now. There is, on average, a five-fold increase in chlorophyll concentrations from 
Northern California to southern Vancouver Island (Hickey and Banas 2008), a trend that corresponds roughly to 
murrelet density along this zone. Sydeman et al. (2013) found a large decline in seabird productivity off California 
during 2001-2007, the same period that saw a decline in murrelets. In the 1980s and 1990s, there was roughly a 
14-15 yr. interval between January-March temperature peaks along the coasts of Washington and Oregon (Figure 
3 in Hollowed et al. 2001) compared to the estimated 14.6 y cycle found here for murrelet. Fiedler and Mantua 
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(2017) found a pattern of high California Current SST values in the 1990s and 2014-2016 (the end of their data, 
their Figure 1) with a local minimum between these peaks in 2008, the same year as the minimum value for the 
fitted murrelet sine function. These relationships are in no way offered as explanatory. Rather, they suggest that 
the behavior of the California Current may be a good place to look for murrelet demographic drivers, as also noted 
by Rivers et al. (2022).  
 
The modeling exercise undertaken here illustrates the difficulties of determining and using trend information. For 
this and other applications, such as fitting a habitat model, a true best model that is flat might be rejected because 
P>0.05 and another model (e.g., segmented) accepted despite biological implausibility. Thus, caution is warranted 
when conducting multi-model comparisons or screening. 
 

5.0 CONCLUSIONS 
 
Trend is an important metric for evaluating population status and determining management objectives. Different 
modeling approaches may lead to different conclusions, and legitimacy for extrapolating trend beyond the 
temporal window of the data it was derived from. It may be useful to explore possible trend models rather than 
just using the most obvious one to avoid incorrect inference. In the case of marbled murrelet, the simple trends do 
not indicate that recovery is happening but do seem to rule out significant declines. The quadratic and segmented 
models appear to have better fit but lack underlying justification. The best-fit model is sinusoidal with period 
=14.6y. This might relate to ocean conditions, particularly in the California Current, that affect food supply. 
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